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Tal.09iO3 per unit cell, viz. 7.4 g.cm -3, rather than with 
that for anion vacancies. 

We obtained powder patterns of KTa5013 which we 
could not index, but attempts to grow crystals by cool- 
ing melts from 1700 °C in iridium led to solid solutions 
of potassium oxide in high-temperature tantala. 

This work was carried out under a research contract 
for the United Kingdom Atomic Energy Authority 
and we wish to thank the Director of the Atomic 
Energy Research Establishment, Harwell for permis- 
sion to publish these results. 
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Some well-known results which are often used in the analysis of X-ray diffraction data are derived, and 
some new results proved. Algorithms are given which allow these results to be used on a computer. 

Introduction 

In recent papers Jeffery (1963) and Bienenstock & 
Ewald (1962) have studied the symmetry of reciprocal 
space; earlier work by Buerger (1949), Waser (1955) 
and Trueblood (1956) has dealt with other aspects 
of the  effects of symmetry on X-ray diffraction. In 
this paper, an attempt is made to develop a systematic 
approach to the problems arising in programming a 
digital computer for the three basic calculations of 
crystallography, i.e. structure factors, Fourier syn- 
thesis and least squares. Some of the results have been 
derived by earlier workers; some, to the best of the wri- 
ter's knowledge, have neverbeen derived at all, although 
they are in common use; still others are new. In each 
case, algorithms for application of the results are given, 
in ALGOL 60 reference language (Naur, 1963). 

Notation 

We shall denote a group by a script capital, e. g.fq, v~g ', 
and particular elements of a group by upper case 
letters, possibly with a suffix, e.g. G, H~. Since the 
groups with which we are concerned are all groups of 
symmetry operations, it is convenient to describe them 
in terms of matrices; in particular a bold-faced R 
denotes a 3 x 3 rotation matrix each of whose elements 
is either +1, 0 or - 1 ,  and t denotes a 3 x 1 matrix 
(column vector) whose elements are all multiples of 

and lie in the range 0 to < 1. The inverse of R is 
written R- 1 and its transpose as R t. 

The action of any crystallographic symmetry opera- 
tor G, on a vector r can be defined as 

Gr= R r + t  (1.1 
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i.e. as rotation followed by a translation. The result 
is a new vector, and it is understood that each element 
of the result is normalized to lie in the range 0 to < 1. 

Following Lomont (1959), we shall find it convenient 
to use the notation 

Gr = Rr + t = (RIt)r (1.2a) 

or G - ( R I 0 .  (1.2b) 

Every space group contains a unit element U, which 
has the property that for any r 

Ur = (Ulu)r = r .  ( l '3a) 

Obviously U = I  the unit matrix, u = 0 the null vector, 
and 

U - ( I I 0 ) .  (1.3b) 

The product of two operators GIGz is defined by 

G1G2r = (RIt)l (Rlt)2 r (1.4a) 
= (RIt)x (R~r + t2) (1.4b) 
= R1Rzr + Rxt2 + tl (1.4c) 

from which we deduce that 

GIG2 =- (RIt)l (Rlt)2- (R1R21Rlt2 + t l ) .  ( l '4d)  

Comparison of (1.4d) and (1-3b) shows that if G2 is 
the inverse of Gs, i.e. if 

G1G2 = U ,  
then 

RIR2=I  i.e. Rz=Ri  -1 (1.5a) 
and 

R i t z+ t1=0  i.e. t2 = - R i - l t l  (1.5b) 
so that 

(RIt)i -1 = (Ri-11- Ri-1tl) (1.5c) 

Direct space symmetry 

General posit ions 

Let f~ be a space group, of order g. Then if r is an 
arbitrary position in the unit cell, it is in general true 
that 

Glr # Gzr # . . .  Gg-lr # Ggr (2.1) 

i.e. the result of applying the elements of ~ in turn 
to the position r is to give in all g distinct but related 
positions. If this is so we speak of r as being a 'general 
position' in the unit cell, and of the positions G~r 
(1 < i < g )  as being 'equivalent' to the position r. 

Special  posit ions 

In some space groups there are certain positions 
s in the unit cell for which 

G~s = G #  = . . .  Grs (h suffices), (2.2) 

i.e. the result of applying h different elements of 
in turn to the position s is to give the same position 
h times over. In this case we call s a 'special position'. 

Multiply equations (2.2) by the inverse of any 
element: without any loss in generality we choose 
G; -1. Then 

G;-1Gus= G 7 1 G # =  . . . G r l G r s = s  (2"3a) 
o r  

G~0' s =  Ge, s = . . . =  Us (2-3b) 

where 
Gq, = GZ1G~. (2"4) 

The h elements appearing in (2.2)are distinct, and 
so therefore are the elements in (2.3); further the 
complex of elements in (2.3) is closed, as may be 
simply demonstrated by multiplying (2.3b) by any 
element appearing in the complex. This complex is 
therefore a subgroup of f~, of order h; let us call it 
o~'. The order of ~ is a factor of g, the order of ~ ;  
suppose n = g / h .  Then we can express f¢ in the form 

f~ = v*f' G1 + v~f ' G2 + . . . ~ v  G n (2"5) 

where G1, G z . . . G n  are any n elements of ~ which 
satisfy the condition 

G l s #  G z s #  . . . Gns . (2.6) 

These results allow us to replace an atom which 
occurs in a special position s, by a 'fractional' atom, 
whose scattering power is 1/h of that of the atom 
which actually occurs there, and then to treat the atom 
as though it were in a general position. An alter- 
native approach is described by the ALGOL pro- 
cedure 'Load cell' in the Appendix. This is an al- 
gorithm which, given a table of the contents of the 
asymmetric unit of a structure, and a table of the ele- 
ments of the space group, will enumerate the contents 
of the unit cell, giving each atom its correct multipli- 
city. A by-product of this process is a table showing 
which group elements give rise to a particular atom. 
We now show how this information may be used to 
find what restrictions are imposed on the coordinates 
and thermal parameters of atoms on special positions. 

Restrict ions on coordinates 

An atom in a special position satisfies equations 
(2.2), which imply (2.3b). A necessary and sufficient 
condition that s shall satisfy (2.3b) is that it may be 
expressed in the form 

s = 1/h ~, G~,r (2.7) 

where the summation is over the elements of the sub- 
group ~ .  The condition is readly seen to be sufficient 
by direct substitution of (2-7) in (2-3b); in each case 
the resulting summation is a reordering of the same 
terms. The condition is necessary, for addition of the 
h separate equations 

S = G~o,s 
leads directly to (2.7). 

Restrict ions on thermal  parameters  

An atom in a special position also has restrictions 
on the values of its thermal parameters. The scattering 
by an atom which is undergoing anisotropic thermal 
motion is usually described by forming the convolute 
of the electron density of the stationary atom with a 
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probability density; the Fourier transform of this leads 
to a reduction of the scattering power of the atom 
by a factor 

~p = exp - htTh (2.8) 

where T is a symmetric positive definite matrix of order 
3, the vibration matrix, and h the reciprocal lattice 
point at which the scattering is observed. For an 
atom on a general position the value of T is arbitrary: 
let us write it in the form 

3 

T =  X et21e~ (2.9) 
i = 1  

where 2~ is an eigenvalue of T and ei the associated 
eigenvector. When an operator Gp is applied to the 
atom, the coordinates are transformed, and the value 
of T is also transformed, to T~. The eigenvalues of 
T are unaltered, but the eigenvectors are transformed to 

e~ = R ~e i .  (2.10) 

The transformed value of T is then 
3 

T~ = 2~ e~ 2 t e~ t (2.11 a) 
i = l  

3 
= 2~ R~ el ~t e[ R~ t (2.11 b) 

i = l  

= R~TR~. (2.11c) 

If the atom is in a special position, then (2.11c) 
still holds. There is now a restriction that T, the vibra- 
tion matrix, shall transform into itself under each 
element of J~g ', so that 

T = R~,TR t, = Rq,TR t, = . . .  (h suffices). (2.12) 

A necessary and sufficient condition is that T may 
be expressed in the form 

T= 1/h • R~, SR~, (2.13) 

where S is a symmetric positive definite matrix, and 
the summation is over the elements of the subgroup 
J¢~. The proof of this is similar to that for the corres- 
ponding statement concerning coordinates. These 
results are a generalization of those of Trueblood 
(1956). 

Reciprocal space symmetry 

The structure factor F(h) for a given reciprocal lattice 
point h may be written 

F(h)= I Q(r) exp 2rcihtrdz (3.1a) 

where r is the volume of a single unit cell, and r is the 
position of the volume element dr  within which the 
electron density is Q(r). If we replace r by Gr in (3. l a) 
the value of the integral is unaltered, i.e. 

F(h)= t Q(Gr) exp 2rcihtGrdz. (3.1b) 
d T 

Now 
Q(Gr) =Q(r), (3.2) 

the effect of G being to map the contents of the unit 
cell on to itself and 

htGr = ht(Rlt)r = htRr + htt .  

Using (3.2), and (3.3) in (3.1b), and noting that 

we find 

(3.3) 

i.e. 

h tR=(Rth)  t (3.4) 

F(h)= f Q(r) exp 2~i{(Rth)tr+htt}dz. (3.5a) 

F(h) = exp 2~zihtt f Q(r) exp 2zH(Rth)trdz (3.5b) 

on bringing the constant factor exp 2nihtt outside the 
integration. By comparison with (3.1a), the integral is 
seen to be simply F(Rth) and we have the important 
result 

FOa) = exp 2~zihtt F(Rth) (3.6a) 
o r  

F(Rth) = exp -- 2rcihtt F(h) .  (3-6b) 

This result was derived by Waser (1955). 

Lattice absences 
An important complex of ~ is that for which R 

is equal to the unit matrix, i.e. those elements of the 
form 

Gi=(I l t i ) .  (3.7) 

Obviously this complex forms a subgroup of ~,  for 
if Gl, Gj are any two elements then (1.4d) shows that 
their product is 

G~Gj = (Ilt0 (Iltj) = (IIt~+tj), (3.8) 

which is of the form (3.7), the complex therefore 
being closed. We thus have a subgroup each of whose 
elements is simply a translation; note that such a 
subgroup cannot give rise to a special position, for 
there is no non-trivial value of t such that 

( I l t ) r = r + t  = r .  

We shall denote this subgroup by g and its order 
by e. The inverse of any element in g,  say (Ilti) is, 
from (1.5c), the element 

(11071 -= ( l l -  t i) .  (3.9) 

Thus, for any element El there is an element El,, with 
the property that 

exp 2zcihtti = (exp 2nihtti,) * . (3.10) 

(In some cases the element Et, may be Et itself. This 
implies that 

t i - - t t  (mod 1), (3.11) 

i.e. that the elements of ti are all either 0 or ½). 
Consider the sum of all the equations (3.6a) which 

are produced by the subgroup ~;  there are e such 
equations and we find 
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eF(h) = F(l~h) ]7 exp 2z~ih~t~. (3.12) 

Bearing 3.10 in mind, the value of the summation is 
some real number; thus if the real number k is defined 
by 

k = Z exp 2~zihtt~ (3.13) 
d~ 

then 3.12 is 
eF(h)=kF(h) . (3.14) 

There are now two possibilities 

(1) e=k ,  and F(h) is arbitrary 
(2) e ¢  k, and hence F(h) is identically zero. 

The values of h for which F(h) is thus constrained 
to be zero are the 'lattice absences'. 

The subgroup ~ has the property that for any 
element G in f~, 

G - ~ G  = ~ .  (3.15) 

(This is most easily verified by evaluating a typical 
triple product.) 

The subgroup ~ is thus a normal subgroup of f¢, 
and we can form the quotient group ~ ,  with order 
h(=g/e) defined by 

~=~H~+e~Hz+.. ~Hn. (3.16) 

The implication is that it is possible to separate out 
completely the effects of the lattice translations when 
discussing diffraction phenomena. The translation 
group ¢ causes some reflexions to be completely absent: 
others are p/'esent and the structure factors are simply 
e times those which would be generated by the group 

acting on the asymmetric unit. The remainder of 

th~s section ~s concerned s0~e~y with the group ~ ,  
defined by (3.16). 

Space-group absences 
Consider the set of h equations which are the result 

of applying the elements o f ~  in (3.6b). 

F(R~h)=F(h) exp-2nih~t~ 1 < i < h .  

In general, the products R~h are not equal; there will 
however be certain values of h for which there are 
equations of the form 

R S h = R ~ h = . . . R ~ h  (p suffices) (3.17a) 

analogous to equations (2-2). Obviously there exists a 
subgroup o f ~ ,  which is defined by 

R ~ , h = R ~ , h = . . . R ~ : , h = h ,  (3.17b) 
where 

R~, = RiR k 1. (3" 18) 

If we now examine the sum of equations (3.6b) for 
the elements of this subgroup we find 

pFQa)=pF(R~h)=F(h) Z exp (-2zr iht t0 .  (3.19) 

The inverse of any element (equation 1.5c) is 

(RIt)/-~ - (R/-~I- a/- lti) 

and the sum of a term and its corresponding inverse 
in (3.19) is 

exp - 2~zihtt~ + exp 2~rihtR~ - lti .  (3.20) 

Now, for the subgroup R~h=h, and substitution in 
(3.20) leads to the expression 

e x p -  2z~ih~ti + exp 2~zihtRtRi- lt~ (3.21) 

which is a purely real quantity. 
Thus we can combine each element in (3-19) with 

its inverse to give a contribution to the sum which 
is real; suppose the value of the summation is the 
real number q. Then (3.19) takes the form 

pF(h)=qF(h) . (3.22) 

As for lattice absences the only possibilities are that 
p = q and F(h) is arbitrary, or that pC  q and F0a) is 
identically zero. Such a reflexion with zero structure 
factor is known as a 'space-group absence'. 

Equivalent reflexions 
We now consider equation (3.19) for the case Rib :~ h. 

We do so by expressing the complex defined by 
(3.17a) as the product of the subgroup defined by 
(3.17b) with the element Gk whose rotation part Rk 
appears in (3.18). Thus each term of the complex 
takes the form 

(Ri,lt~,) (RkltD (3.23a) 

(where R~,=R~Re and R[,h=h).  The productis (equa- 
tion 1.4d) 

R~,R~I R~,tk + ti, : (3.23b) 

and the sum ~n (3.D) ~s 
pF(Rtk Ri,h) = F~a) ~, exp {-2ztih~(Ri,t~+t~,)}. 

p t e r m s  (3"24) 

Applying the result R~,h=h to each side we find 

pF(Rtkh)=F(h) • exp(--2niht( tk+t t , )} ,  
p t e r m s  (3"25a) 

or; bringing out a factor exp (-2rcih~tD 

pF(R~h) = exp( -  2~zihttD F(h) 2: exp ( -  2rrihtt~,). 
p terms (3"25b) 

The summation here is precisely that encountered 
already in (3.19). As we have shown, its value is 
purely real. If its value is not equal to p, then F(h)= 0, 
and so therefore does F(Rtkh). If the value of the 
summation is p then 

F(Rth) = exp { - 2 n i h ' t  F(h)} (3.26) 

even though there are several elements in f~ for which 
R~,h = h. Physically, the interpretation is that a reflexion 
whose index Rth can be generated from h by several 
different elements in N can be evaluated as though 
only one element gave rise to it. Further, it is obvious 
that if we multiply 3-26 by its complex conjugate then 

IF(Rth)12 = IF(h)l 2 . (3"27) 
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i.e. The amplitudes o f  equivalent reflexions are equal 
and their relative phases are simply determined. 

The multiplicity of a reflexion is the number of 
different values of Rth generated by the group f#. The 
value of this is determined very simply, as a by-product 
of the A L G O L  procedure 'Generate F' given in the 
Appendix. 

Least-squares refinement 

The least-squares method of crystal structure refine- 
ment is based o n  the minimization Of a weighted 
sum of squares of discrepancies between observed 
structure amplitudes Fo(h), and computed structure 
factors Fc(h, Pd which are functions of n independent 
parameters p~(1 <iNn) .  The usual method is to derive 
corrections Jp~ to the parameters by solving the 
normal equations 

(2~dd t) (6p) = (~'l/coAd) (4.1) 
h h 

where d is the vector 
& =  I/co~lFcllOP~, (4.2) 

co is the weight attached to the observation h, A is 
the value of (Ifol-Ifcl), and the summations are 
taken over all values of il. This process is applied 
iteratively, until the refinement is completed. 

The formation of the normal equations is carried 
out on the assumption that each of the p~ is an indepen- 
dent parameter of the problem; if this is the case then 
the matrix Edd t is necessaril;¢ positive definite, and equa- 

h 
tions (4.1) have a unique solution. However, where 
atoms occupy special positions in the unit cell some 
of the p~ are constrained to take arbitrary values,' and 
some may be linear combinations of Others. In such 
cases the matrix is positive semi-definite, and before 
the equations can be solved the matrix must be 
modified. 

Suppose that a set of independent parameters of 
the problem is qj(1 < j < m < n ) ,  and let 

p = M q  (4.3) 

define the non-independent parameters p, in terms of q. 
Now 

c31FI 0p~ 0IF[ _ 2; (4.4) 
3ql i gP~ ~ql 

and from (4.3) 

o r  

- Mi j  (4.5) 
0qj 

31FI 
• = ~, ~ Mi j  (4.6a) 

" " Oqj  i vp~ 

dq=Mtdv (4.6b) 

in an obvious notation. Equations (4.1) for the correct- 
ions to the independent parameters now take the 
form 

[E(Mtdv)(Mtdv)t](Jq)= EVcoAMtdv (4.7) 
h h 

and the corrections to the non-independent parameters 
p are given by 

6 p = M J q .  (4.8) 

It is worth remarking at this stage that M is a 
large matrix (n rows and m columns, i.e. larger than 
the reduced set of normal equations). However, M 
is very sparse, its non-zero elements are all ratios of 
small integers, and a suitable ordering of the param- 
eters p~, q~ in which elements referring to a particular 
atom in the asymmetric unit form a solid infix* of 
p, q, allows M to be bought into a partitioned form 
with non-trivial blocks on the 'diagonal' (M is not 
square) and null blocks elsewhere. Thus the operation 
suggested by (4.7) is better performed by storing M 
as a mapping in the form i, j, Mzy than as a straight- 
forward array. 

We now show mathematically how to form M; 
the ALGOL procedure 'make M '  given in the Appen- 
dix shows how the techniques can be applied in 
practice. 

Coordinate terms 
For an atom in a special position the non-inde- 

pendent position parameters p are represented by 
s in (2.7), and the independent parameters q by r. It 
follows that in this case 

p = l / h ~ , G q = l / h E ( R q + t ) .  (4.9) 
,~e ocy 

Obviously 

p + J p = l / h  2 ; G ( q + J q ) = l / h  E ( R q + t + R J q )  (4"10) 

and 

Op~ _ 1/h Y, R~j ( l < i , j < 3 ) .  (4.11) 

If, for any j, M~j=0 for all i then the corresponding 
p~ is obviously constrained to some value governed only 
by the values of t in (4-9). It is therefore possible to 
delete the j th  column from M,  and the j t h  element 
from q, reducing the order of q by one. 

Thermal motion terms 

For an atom in a special position the non-indepen- 
dent thermal parameters are represented by T in (2.13), 
and the independent parameters b y  s. In this case 
therefore 

T =  1 / h  • RSR t (4.12) 

or, in suffix notation, 
T~j= 1/h E R¢rRjsSrs . (4.1'3) 

g 

We map T~j on to p( t j  ) and Srs on to q(r, s); then 

pij = (1/h ,Y, R¢rRjs) qrs (4" ! 4) 

* See !ver.son (1962), 
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and the matrix element M~,, ~), (r, s) is given by 

M(~, j), (r, s) = (1/h ~, RirR~s). (4" 15) 

Again it will be possible to delete zero columns from 
M and reduce the order of q correspondingly. 

Error estimates 

The variance-covariance matrix for the parameters 
q is given by the inverse of the matrix ,~ (Mtd) (Mtd) t 

h 

appearing in (4.7). The corresponding matrix for the 
parameters p, 2: dd t is singular, and we cannot form 

h 

an inverse. We can however form the variance--covari- 
ance matrix for the parameters p. Suppose t7~ is the 
estimate of the value of the parameter q~; define a 
vector Aq by 

Aq~ = q~ - ~ .  (4.16) 

Then the variance-covariance matrix Q is defined by 

Q =  E {Aq3qt}/No (4.17) 

where No is the number of degrees of freedom, and 
E is the expectation operator. Similarly, the variance- 
covariance matrix for the parameters p is defined by 

p= E{ApAp~}/No . (4.18) 
Now 

zlp= p -  ~ =  M q -  M ~ =  M ( q -  el) = MAq.  

Substituting, 
(4.19) 

p=E{(MAq)(MAq)~) /No (4.20a) 

= E{MAq~qtMt}/No (4.20b) 

=M(E{AqAqt})M~/No (4.20e) 

= M Q M ~ ,  (4.20d) 

which allows the computation of p to be performed. 

A P P E N D I X  

The Appendix gives algorithms, in ALGOL 60, for 
applying the processes described in the text. The 
actual parameters to be supplied at each procedure 
activation are described in the comment. For the 
procedure 'Load cell' the actual array cell must have 
subscript bounds 1 :P, 1:3, where P >  M, the number 
of atoms in the unit cell. 

real procedure norm(x); 
value x; real x; 
comment x is normalized so that 0 < x < 1. The non- 

local variable eps specifies the accuracy of work- 
ing; 

norm: = x-entier(x + eps); 
real procedure dot (a) times: (b) summed over:(k); 

real a,b; integer k; 

comment forms an innerproduct of order 3; 
begin real s; s: = 0; 

for k : =  1,2,3 do s: = s + a  × b; 
dot: = s  

end dot; 
boolean procedure equal (a) compared with: (b) over: 

(k,n); 
value n; 
real a,b ; integer k,n ; 

comment equal is true if the two vectors a, b are equal; 
begin boolean s; s: = true; 

for k: = 1 step 1 until n do s: = s and abs ( a -  b) < eps; 
equal: = s 

end equal; 
procedure apply (R,t,i) the ith operator to: (atom, j )  

the j t h  atom giving the kth new atom: (new 
atom, k); 

value i, j, k; integer i, j, k; 
array R, t, atom, new atom; 

comment on entry i indicates a particular element of 
the space group, which is to be applied to the 
coordinates of the j t h  atom, stored as x in atom 
[j,1], y in atom [j,2] and z in atom [j,3], so as to 
give the coordinates of the kth new atom; 

begin integer p, q; 
f o r p : = l ,  2, 3 do 
new atom [k,p]: = norm (dot(R[i,p,q], atom [j,q],q) + 

t[i,p]) 
end apply; 
procedure Load cell (R, t ,N)  the space group and 

asymmetric unit: (unit, m) together define the 
contents of the unit cell: (ceU, M) and the arrays: 
(tag, check); 

value N, m; 
array R, t, unit cell; boolean array tag; 
integer array check; integer N,m,M;  

comment on entry the coordinates of the m atoms in 
the asymmetric unit are in unit, and the N elements of 
the space groups are in R, t. The procedure forms 
the contents of the unit cell in cell, the number of 
atoms being M. The array tag [I:N, I :M]  has 
tag [i,j] true if group element i is a symmetry 
operator for atom j. The array check [1 :m] has 
in check [i] the position of the last atom of the 
ith type in the array cell; 

begin integer i, j,  others, this, element, atom; 
others:  = O; 
for a t o m : =  1 step 1 until m do 
begin t h i s :=0 ;  comment number of atoms of this 

type in cell; 
for element:= 1 step 1 until N do 
begin apply (R, t, element, unit, atom, cell, 

others + this + 1); 
for i: = 1 step 1 until this do 
if equal (cell[others + this + 1,j], cell[others + 

i,j],j,3) 
then go to special position; 

i: = this: = this + 1 ; comment accept new atom; 
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special position: tag[element, others + i]: = true 
end application of all elements to one atom; 

check[atom]: = others: = others + this 
end treatment of all atoms; 
M: = others 

end Load cell; 
procedure Generate F(F,m) indices and multiplicity 

for the group: (R,t ,N); 
value N; 
array F, R, t; integer m, N; 

comment on entry F[1,1]=h,  F[2,1]=k,  F[3 ,1]=l  
and F[4,1], F[5,1] hold the real and imaginary 
parts of F(hkl). The arrays R, t specify the space 
group, of order N. On exit, m gives the number 
of equivalent reflexions, whose indices are in 
F[1,i], F[2,i], F[3,i] and real and imaginary parts 
inF[4,i], F[5,i], (1 < i < m ) ;  

begin integer i, j ,  k, arg; 
m : = l ;  
for i: = 1 step 1 until N do 
begin for j: = 1, 2, 3 do F[i, rn+ 1]: = d o t  (R[i,k,j], 

F[k,1], k); 
for j: = 1 step 1 until rn do 
if equal (F[k,j], F[k, m +  1],k,3) then go to not 

new h; 
new h:m: = m +  1 ; 

a r g : =  12 x norm (dot(F[j,1], t[i , j], j)); 
comment form h.t; 
F[4,m]: = F[4,1] × ctab[arg] - F[5,1] x stab[arg]; 
F[5,m]: = F[4,1] x stab[arg] + F[5,1] x ctab[arg]; 

not new h: end loop for one element 
end Generate F;  

procedure make M ( M 3, M 6, t 3,t 6, R,N,m,tag,check) ; 
value N,m ; integer N,m ; 
boolean array t3,t6,tag; integer array check; array 

M 3 , M 6 , R ;  
comment On entry M3[1 : 3 x m,1 : 3] and M6[1:6 x m, 

1 : 6] contain zeros, the N rotations of the group are 
in R, and tag and check have been initialized by 
load cell. On exit, M3 and M6 hold m 3 x 3 or 6 x 6 
blocks of M, one for each atom in the asymmetric 
unit, and non-trivial columns have t3 or t6 false; 

begin integer atom, check a,h,p3,p6,element,dp6,q6,Lj; 
for a t o m : =  0 step 1 until m -  1 do 
begin loop for one atom: h: = 0; p3; = 3 x atom; 

p6: = 6 × atom; 
check a: = if atom = 0 then 1 else check[atom] + 1 ; 
for element: = 1 step 1 until N do 

if tag[element, check a] then 
begin process one element: h: = h + 1 ; 

for i: = 1,2,3 do for j: = 1,2,3 do 
M3[p3 + i,j]: = M3[p3 + i,j] + R[element,i,j]; 
dp6 : =p6;  
for i :=1,2 ,3  flo f o r j : = i  step 1 until 3 do 
begin dp6: = d p 6 +  1 ; q6: = 0 ;  

for r: = 1,2,3 do for s: = r  step 1 until 3 do 
begin q6: = q6 + 1 ; 

M 6[dp6,q6] : = M 6[dp6,q6] + R[element, i,r] 
x R[element,j,s] 

end 
end formation of M6 

end loop for one element; 
for i :=1 ,2 ,3  do begin t3[p3+i] :=equal (M3[p3+ 

i,j],O,j,3); 
for j :  = 1,2,3 do M3[p3 + i,j]: = M3[p3 + i,j]/h 

end normalization of M 3 ;  
for i: = 1 step 1 until 6 do 

begin t6[p6 + i]: = equal(M6[p6 + i,j],O,j,6); 
for j :  = 1 step 1 until 6 do 

M6[p6 + i,j]:  = M6[p6 + i,j]/h 
end normalization of M6  

end loop for one atom 
end make M; 

comment the arrays ctab, stab are declared and 
initialized by; 

array ctab, stab [0:11]; real a; integer i; 
for i: = 0 step 1 until 11 do 
begin a: = i x 0.5235987756; 

ctab[i]: = cos(a); stab[i]: = sin(a) 
end initialization; 
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